If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2-21w+20=0
a = 4; b = -21; c = +20;
Δ = b2-4ac
Δ = -212-4·4·20
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-11}{2*4}=\frac{10}{8} =1+1/4 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+11}{2*4}=\frac{32}{8} =4 $
| 88=33^x | | 8/9(x)=20/27 | | -(-7k+8)=7k+34 | | -5+8x+2=4x+4 | | 2(6d+)=18-3(16-3d) | | 8(3x+6)=9 | | 0.2x+20.2=31 | | (5^x/5)(5^x/2)=5^16 | | 300=(3x)(3x) | | -3/4z+1=197 | | 5m-2=9 | | 7x-12-4x=9+8x+4 | | 300=(3x)^2 | | 100z-440=120z | | (2w-1)(5w+7)=0 | | 300=(3n)^2 | | 2/3=x24 | | 3x+40=3x-70 | | 3/3=x8 | | x2+33=31 | | x2+2x=x(x+2) | | 13=w-14/2w= | | 203-v=6 | | 3x-70=3x+40 | | 12x+18-58-8=180 | | (1/3^x)=27 | | (9x-4)/x=2 | | 12+z=2+5z | | -8x(x-1)-x-11=-9(x+4)+17 | | x-10/2030=-4 | | 5x-40=3x-60 | | 5=-1/5(2x-4)-2x |